
The One-Way Communication Complexity of Gap Hamming

Distance

T.S. Jayram∗ Ravi Kumar† D. Sivakumar‡

Abstract

Consider the gap Hamming distance problem (GapHD) for vectors of length n with the
promise that the distance is either at least n

2 +
√
n or at most n

2 −
√
n. The goal is to find out

which of these two cases occurs. Woodruff [Woo04] gave a linear lower bound for the one-way
communication complexity of GapHD. In this note we give a simple proof of this result. Our
proof uses a simple reduction and avoids the VC-dimension arguments used in the previous
paper. As shown in [Woo04], this implies an Ω(1/ε2)-space lower bound for approximating
frequency moments to within a factor 1 + ε in the data stream model.

The Hamming distance H(x, y) between two vectors x and y is defined to be the number of
positions i such that xi 6= yi. Let GapHD denote the Hamming distance problem for vectors x and
y of length n each with the promise that either H(x, y) ≤ n

2 −
√
n or H(x, y) ≥ n

2 +
√
n. The goal

is to find out which of these two cases occurs. In the one-way communication model [KN97], Alice
gets x, Bob gets y and Alice sends a single message to Bob using which Bob outputs the desired
answer. We will also allow the protocols to be randomized in which case both Alice and Bob have
access to a public random string and the correct answer must be output with probability at least
2/3. The cost of such a protocol is the maximum number of bits communicated by Alice over all
inputs. The randomized one-way communication complexity of GapHD is the cost of the cheapest
one-way protocol for GapHD.

Woodruff [Woo04] showed an Ω(n) lower bound for GapHD and used it to obtain an Ω(1/ε2)-
space lower bound for approximating frequency moments to within a factor 1+ε in the data stream
model. In this note we show a simpler proof of the linear lower bound for GapHD; our proof uses
an easy reduction from the indexing problem and avoids the VC-dimension arguments in [Woo04].
We will present two different reductions: the first reduction uses Rademacher sums and the second
reduction treats the indexing problem from a geometric viewpoint.

Recall the indexing problem: Alice gets a set T ⊆ [n], Bob gets an element i ∈ [n], and the
goal is to compute whether i ∈ T . We know that this has an Ω(n) lower bound in the one-way
communication model (e.g. see [BJKS02] for a sharp bound in terms of the error probability). The
main result of this note is the following:

Theorem. The randomized one-way communication complexity of GapHD is linear in the length
of the input.
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Proof. Let Alice’s input be T ⊆ [n] and Bob’s input be i ∈ [n]. Transform T to a vector u ∈
{−1,+1}n by mapping 0 7→ +1 and 1 7→ −1. Let ei denote the standard basis vector corresponding
to Bob’s input.

Alice and Bob will use public randomness to realize an instance (x, y) ∈ {−1, 0,+1}N of GapHD,
for some N to be specified later, as follows. Pick N i.i.d. vectors r1, r2, . . . , rN in Rn where the
distribution µ of each rk will be specified later. Define xk , sgn(〈u, rk〉) and yk , sgn(〈ei, rk〉) for
all k. Note that H(x, y) = |{k : sgn(〈u, rk〉) 6= sgn(〈ei, rk〉)}|.

We will show that for any r ∼ µ,

Pr[sgn(〈u, r〉) 6= sgn(〈ei, r〉)]

{
≥ 1

2 + c√
n

if ui = −1,

≤ 1
2 −

c√
n

if ui = +1,
(1)

for some positive constant c > 0.
We will use the following version of Chernoff’s bound (e.g., see [McD98]):

Chernoff’s Bound. Let X1, X2, . . . , XN be N i.i.d. binary random variables and X =
∑N

k=1Xk.
Then, Pr[X − E[X] > ε] ≤ e−2ε2/N and Pr[X − E[X] < −ε] ≤ e−2ε2/N .

Set N = 4n/c2 and ε =
√
N . By Chernoff’s bound, with probability at least 2/3, we have that

either H(x, y) ≥ N
2 +
√
N if ui = −1, or H(x, y) ≤ N

2 −
√
N if ui = +1. Therefore, given a protocol

for GapHD, we have a protocol for the indexing problem. Since N = O(n), this proves the linear
lower bound for GapHD.

We now establish (1) by giving two different proofs.

Rademacher sums: Assume that n is odd. Let µ be the uniform distribution over the vectors in
{−1,+1}n and let r ∼ µ. Note that sgn(〈ei, r〉) = sgn(ri). Write 〈u, r〉 = uiri+

∑
j 6=i ujrj = uiri+w,

where w ,
∑

j 6=i ujrj . Note that w is independent of ri. Fix a value for w and there are 2 cases to
consider:

• If w 6= 0, then |w| ≥ 2 since w is a sum of an even number of ±1 values. Therefore,
sgn(〈u, r〉) = sgn(w), implying that

Pr[sgn(〈u, r〉) 6= sgn(〈ei, r〉) | w] = Pr[sgn(w) 6= sgn(ri) | w] =
1
2

(2)

• If w = 0, then sgn(〈u, r〉) = sgn(uiri). Using the independence of w and ri, we obtain

Pr[sgn(〈u, r〉) 6= sgn(〈ei, r〉) | w] = Pr[sgn(uiri) 6= sgn(ri) | w]
= Pr[sgn(uiri) 6= sgn(ri)]

=

{
1 if ui = −1,
0 if ui = +1

(3)

Now w is the sum of n− 1 iid random variables each of which is distributed uniformly in {−1,+1}.
Since n is odd, Pr[w = 0] = c/

√
n some constant c > 0. Combining this with (2) and (3), we

conclude

Pr[sgn(〈u, r〉) 6= sgn(〈ei, r〉)] =

{
1
2 + c

2
√
n

if ui = −1,
1
2 −

c
2
√
n

if ui = +1
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Geometry: The key idea is to view u and ei as vectors in Euclidean space and apply the inner
product protocol given in [KNR99]. This protocol uses the technique of [GW95] which arose in
the context of rounding the solution of a semi-definite program. For the sake of completeness, we
sketch this argument. Define µ such that r ∼ µ is a uniformly chosen n-dimensional unit vector.
By rotational symmetry, it suffices to consider the 2-dimensional plane determined by u and ei
wherein the direction of r is uniform in that plane. If û denotes the unit vector in the direction of
u, then it follows that

Pr[sgn(〈u, r〉) 6= sgn(〈ei, r〉)] =
arccos(〈û, ei〉)

π
=

1
π
· arccos

(
ui√
n

)
(4)

Now, for any z ∈ [−1, 1], arccos(z) = π
2 − arcsin(z). Using a simple approximation of arcsin(z)

for small z, it can be shown that there exists a constant c such that arcsin
(

+1√
n

)
≥ c√

n
and

arcsin
(
−1√
n

)
≤ − c√

n
. Substituting in (4), we conclude

Pr[sgn(〈u, r〉) 6= sgn(〈ei, r〉)]

{
≥ (1

2 + c√
n

) if ui = −1,

≤ (1
2 −

c√
n

) if ui = +1,

as required.

Remark. The geometric approach shown above uses an infinite amount of randomness which is not
part of the standard model. However, the important point is that the space of inputs and messages
are finite, therefore, the lower bounds for indexing and consequently for the GapHD will continue
to hold. Alternatively, one can also prove the above bounds using finite amount of randomness by
considering finite-precision versions of the random vectors (as was done in [KNR99]).
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